by Universitat Pompeu Fabra – Barcelona
Diagram of the finding. Credit: Cell Reports (2023). DOI: 10.1016/j.celrep.2023.112123
An international study led by researchers from the Infection Biology Laboratory at the UPF Department of Medicine and Life Sciences (MELIS) establishes that one type of dendritic cell is crucial for the success of immunotherapeutic treatments to control chronic viral infections. These dendritic cells have been found to be key in reactivating exhausted lymphocytes responsible for clearing infected cells to keep the viral load low.
Chronic viral infections, such as those caused by human immunodeficiency virus (HIV) or hepatitis B and C viruses, are characterized by a persistent viral load. This is maintained by a balance between the expansion of the virus and the expansion of exhausted T lymphocytes, which—once the viral load increases—become active, multiply and eliminate infected cells.
In HIV-infected patients, infection has been controlled with antiviral therapy that reduces the viral load to below detectable levels. However, this is transitory, as the viral load increases dramatically when treatment is stopped. With 650,000 people worldwide dying from HIV and 1.5 million acquiring the virus each year, there is a need to find a functional cure that controls the virus without causing disease and avoids the side effects and burden on health systems that antiviral therapy entails.
Hence, immunotherapies based on checkpoint inhibitors that block proteins preventing the immune system from attacking infected cells are considered a promising therapy.
The study published in Cell Reports determines that the various types of dendritic cells differ in their ability to reactivate exhausted lymphocytes during checkpoint immunotherapy. It also identifies XCR1+ cross-presenting dendritic cells as key elements that trigger exhausted lymphocyte reactivation in checkpoint inhibitor-based immunotherapies. Therefore, XCR1+ cross-presenting dendritic cells are a promising therapeutic target to improve virus control during chronic viral infection.
The study, performed in a mouse model of the chronic lymphocytic choriomeningitis virus—which partly resembles human chronic HIV and hepatitis virus infections—opens the possibility of considering combination immunotherapies including checkpoint inhibitors that target cross-presenting dendritic cells as an interesting therapy option for HIV-infected individuals.
“Our findings are an important step forward in understanding the requirements for cure strategies in chronic infections,” says Eva Domenjo, first author of the manuscript. “The next steps now are to improve the duration of the therapeutic benefits and translate the data from the model system to the clinical practice,” adds Andreas Meyerhans, who coordinated the work together with Jordi Argilaguet.
Considering analogous findings in cancer immunotherapy, this not only argues for immunological similarities between chronic infections and cancers, but also gives hope for a timely translation into clinical applications.
More information: Eva Domenjo-Vila et al, XCR1+ DCs are critical for T cell-mediated immunotherapy of chronic viral infections, Cell Reports (2023). DOI: 10.1016/j.celrep.2023.112123
Journal information: Cell Reports
Provided by Universitat Pompeu Fabra – Barcelona
More information: Eva Domenjo-Vila et al, XCR1+ DCs are critical for T cell-mediated immunotherapy of chronic viral infections, Cell Reports (2023). DOI: 10.1016/j.celrep.2023.112123
Journal information: Cell Reports
Provided by Universitat Pompeu Fabra – Barcelona
Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form. For general feedback, use the public comments section below (please adhere to guidelines).
Please select the most appropriate category to facilitate processing of your request
Optional (only if you want to be contacted back)
Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.
We keep our content available to everyone. Consider supporting Science X’s mission by getting a premium account.
This article has been reviewed according to Science X’s editorial process and policies. Editors have highlighted the following attributes while ensuring the content’s credibility:
fact-checked
peer-reviewed publication
proofread
49 shares
Cell type key to successful immunotherapies for chronic viral infections identified
Note:
Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient’s address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Tech Xplore in any form.
About
Medical Xpress is a web-based medical and health news service that is part of the renowned Science X network. Based on the years of experience as a Phys.org medical research channel, started in April 2011, Medical Xpress became a separate website.
Medical Xpress is a part of Science X network. With global reach of over 5 million monthly readers and featuring dedicated websites for hard sciences, technology, smedical research and health news, the Science X network is one of the largest online communities for science-minded people.
Science X Account
Forgot Password?
Not a member? Sign up.
Identify the news topics you want to see and prioritize an order.
Science X Daily and the Weekly Email Newsletter are free features that allow you to receive your favorite sci-tech news updates in your email inbox
© Medical Xpress 2011 – 2023 powered by Science X Network
Newsletter
Science X Daily and the Weekly Email Newsletters are free features that allow you to receive your favourite sci-tech news updates.
Please, allow us to send you push notifications with new Alerts.
Your privacy
This site uses cookies to assist with navigation, analyse your use of our services, collect data for ads personalisation and provide content from third parties. By using our site, you acknowledge that you have read and understand our Privacy Policy and Terms of Use.